Material for the Paper : ” Variational Bayesian Multiple Instance Learning with Gaussian Processes ”
نویسندگان
چکیده
منابع مشابه
Instance Label Prediction by Dirichlet Process Multiple Instance Learning
We propose a generative Bayesian model that predicts instance labels from weak (bag-level) supervision. We solve this problem by simultaneously modeling class distributions by Gaussian mixture models and inferring the class labels of positive bag instances that satisfy the multiple instance constraints. We employ Dirichlet process priors on mixture weights to automate model selection, and effic...
متن کاملVariational Gaussian process classifiers
Gaussian processes are a promising nonlinear regression tool, but it is not straightforward to solve classification problems with them. In this paper the variational methods of Jaakkola and Jordan are applied to Gaussian processes to produce an efficient Bayesian binary classifier.
متن کاملBayesian Alignments of Warped Multi-Output Gaussian Processes
We present a Bayesian extension to convolution processes which defines a representation between multiple functions by an embedding in a shared latent space. The proposed model allows for both arbitrary alignments of the inputs and and also non-parametric output warpings to transform the observations. This gives rise to multiple deep Gaussian process models connected via latent generating proces...
متن کاملVariational Inference for Uncertainty on the Inputs of Gaussian Process Models
The Gaussian process latent variable model (GP-LVM) provides a flexible approach for non-linear dimensionality reduction that has been widely applied. However, the current approach for training GP-LVMs is based on maximum likelihood, where the latent projection variables are maximized over rather than integrated out. In this paper we present a Bayesian method for training GP-LVMs by introducing...
متن کاملExcess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models
Bayesian models are established as one of the main successful paradigms for complex problems in machine learning. To handle intractable inference, research in this area has developed new approximation methods that are fast and effective. However, theoretical analysis of the performance of such approximations is not well developed. The paper furthers such analysis by providing bounds on the exce...
متن کامل